数学学习技巧
数列知识对比学习。
如等差数列与等比数列可以从定义,通项公式,等差(比)中项,前n项和公式,性质人手,如下标成等差数列的项所构成的数列;间隔相等的数列片断和构成的数列;非零的常数列。记的结论如三角形中的三个内角成等差数列,则其中必有一个角为60°,若是三条边成等差数列,三内角的正弦值成等差数列,两个等差数列中相同的项仍构成等差数列,其公差是已知两数列公差的小公倍数;在求数列通项公式时要注意相邻两项的比(差)的关系,以及在对已知条件变形(如加常数,取对数,取倒数)转化为等差(比)数列,在求前n和公式时对于等比数列的求法,以及裂项相消法;同时要注意与函数和不等式的联系
如等差数列与等比数列可以从定义,通项公式,等差(比)中项,前n项和公式,性质人手,如下标成等差数列的项所构成的数列;间隔相等的数列片断和构成的数列;非零的常数列。记的结论如三角形中的三个内角成等差数列,则其中必有一个角为60°,若是三条边成等差数列,三内角的正弦值成等差数列,两个等差数列中相同的项仍构成等差数列,其公差是已知两数列公差的小公倍数;在求数列通项公式时要注意相邻两项的比(差)的关系,以及在对已知条件变形(如加常数,取对数,取倒数)转化为等差(比)数列,在求前n和公式时对于等比数列的求法,以及裂项相消法;同时要注意与函数和不等式的联系
三角函数的学习中要找准一个“变”在三角变换中有角的变换、三角函数名称的变换、三角函数表达式的变换。要观察差异(角、函数、运算),1的运用,寻找联系(借助熟知公式、方法和技巧),特别是在三角函数的周期、值以及函数图象的变换时,常用降次公式和辅助角公式。同时要将平面向量中解三角形综合起来,将它看作为三角函数在三角形中的运用。尤其是正余弦定理的运用,函数图象按向量平移与一般平移不同。
不等式方面以及导数知识将它们看作为是新的解题方法,是能力的提升。
特别是线性规划问题划入不等式的学习中更为有利,一定要将均值不等式成立的条件理解清楚;导数的应用中单调性的讨论以及闭区间上值的讨论又是对函数性质的补充和扩展。对于导数中判断方程解的个数一定要注意极限思想。
特别是线性规划问题划入不等式的学习中更为有利,一定要将均值不等式成立的条件理解清楚;导数的应用中单调性的讨论以及闭区间上值的讨论又是对函数性质的补充和扩展。对于导数中判断方程解的个数一定要注意极限思想。
怎么才能学好数学
圆周率是怎么算出来的
-
01圆周率(Pai)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sinx=0的小正实数x。
-
02是代表圆周长和直径的比值。它是一个无理数,即无限不循环小数。在日常生活中,通常都用3.14代表圆周率去进行近似计算。而用十位小数3.141592654便足以应付一般计算。即使是工程师或物理学家要进行较精密的计算,充其量也只需取值至小数点后几百个位。圆周率用字母π(读作pài)表示,是一个常数(约等于3.141592654)
什么是函数