Python大数据开发培训概况
Hadoop 框架主要由以下组件组成
大数据的应用领域
企业可以通过分析大量的消费者数据来了解消费者的行为、偏好和需求。例如,电商企业通过分析用户的浏览历史、购买记录、收藏夹等数据,实现个性化推荐。像亚马逊这样的电商巨头,利用大数据分析为用户推荐他们可能感兴趣的商品,从而提高用户的购买转化率和忠诚度。同时,企业还可以通过分析市场趋势数据来制定营销策略,如分析竞争对手的产品价格、市场份额变化等数据,以调整自己的产品定价和促销活动。
咨询详情在风险评估方面,银行等金融机构可以利用大数据分析客户的信用记录、收入情况、资产负债情况等多维度数据,评估客户的信用风险,决定是否发放贷款以及贷款的额度和利率。在金融市场交易中,通过分析大量的历史交易数据、宏观经济数据、行业动态数据等,进行投资策略分析和市场预测。例如,对冲基金公司利用大数据技术分析全球金融市场的各种数据,寻找投资机会和预测市场波动。
咨询详情大数据可以用于疾病预测和预防。通过收集和分析大量的患者病历数据、基因数据、生活方式数据(如饮食、运动、吸烟习惯等),可以预测疾病的发生风险。例如,研究人员可以通过分析大量人群的基因数据和家族病史,预测某些遗传性疾病的发病概率。在医疗资源管理方面,利用大数据分析医院的患者流量、病床使用率、医疗设备使用情况等数据,优化医疗资源的分配,提高医疗服务的效率。
咨询详情智能交通系统利用大数据实现交通流量监控和预测。通过在道路上安装的传感器收集车辆的流量、速度、行驶方向等数据,结合交通地图数据和历史交通数据,对交通拥堵情况进行实时监测和预测。例如,交通管理部门可以根据大数据分析的结果,提前调整交通信号灯的时长,疏导交通流量。同时,在物流和供应链管理中,利用大数据分析货物的运输路线、仓库库存、运输时间等数据,优化物流配送方案,降低物流成本
咨询详情
扫清知识死角,精选经典内容
python基础
python开发环境搭建;python快速入门;python数据类型;python输入和输出;python分支语句;python循环语句;python字符串;python列表;python元件、集合、字典;python公共操作和推导式等。
Linux
Linux概述和环境搭建;Linux文件和目录结构;Linux文件编辑器;Linux网络配置和系统管理操作;Linux远程登录;Linux常见基本命令;Linux软件包管理;Shell概述;Shell脚本入门;Shell变量和运算符等。
数据库
数据库的概述和环境搭建;数据库的结构化查询语言;数据库的操作语言;数据库的约束;数据库的查询;数据库的多表操作;数据库的索引;开窗函数概述和over子句;开窗函数之排列函数等。
python爬虫
爬虫基础;request;数据提取;selenium;反爬;mongo数据库;scrapy等。
excel
数据分析概述;数据处理;数据统计;常用函数;图标类型;图标使用;数据透视表;数据透视图;大厂周报案例。
kettle
概述;安装;快速入门;共享数据库连接;转换的插入更新;转换的条件判断;转换与作业综合实战等。