机器视觉产生于工业自动化
在现代工业自动化生产中,涉及到各种各样的检查、测量和零件识别应用,例如汽车零配件尺寸检查和自动装配的完整性检查,电子装配线的元件自动定位,饮料瓶盖的印刷质量检查,产品包装上的条码和字符识别等。这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。通常这种带有高度重复性和智能性的工作只能靠人工检测来完成,我们经常在一些工厂的现代化流水线后面看到数以百计甚至逾千的检测工人来执行这道工序,在给工厂增加巨大的人工成本和管理成本的同时,仍然不能保证100的检验合格率,而当今企业之间的竞争,己经不允许哪怕是0.1的缺陷存在。
咨询详情
有些时候,如微小尺寸的精确快速测量,形状匹配,颜色辨识等,用人眼根本无法连续稳定地进行,其它物理量传感器也难有用武之地。这时,人们开始考虑把计算机的快速性、可靠性、结果的可重复性,与人类视觉的高度智能化和抽象能力相结合,由此逐渐形成了一门新学科—机器视觉。
咨询详情计算机视觉的产生与发展
机器人编程基础需要哪些
熟悉一种编程语言是必要的,如
C++、Python 等。在机器人视觉运动控制中,这些语言用于编写控制程序。以 Python
为例,它的简洁性和丰富的库使其在开发机器人视觉应用中非常受欢迎。例如,使用 Python 编写程序来调用 OpenCV
库进行图像处理,包括图像读取、滤波、特征提取等操作。
对于工业机器人,C++ 可能更常用于与机器人控制系统的底层通信和高性能计算。例如,在与机器人控制器通信时,C++ 可以更高效地发送和接收运动指令,实现快速准确的运动控制。
学员需要理解程序的基本结构,包括顺序结构、循环结构和选择结构。在机器人视觉运动控制程序中,这些结构用于处理不同的任务场景。例如,在一个视觉引导的机器人抓取程序中,需要使用循环结构来不断获取视觉图像,直到发现目标物体;使用选择结构来判断目标物体是否符合抓取条件。
良好的逻辑思维能力有助于解决复杂的编程问题。在视觉运动控制中,可能会遇到多个传感器数据融合、不同运动状态的切换等复杂情况,需要学员通过合理的程序逻辑来处理这些情况。例如,当视觉系统检测到目标物体的位置发生变化时,如何通过程序逻辑调整机器人的运动轨迹,这需要对程序的执行流程和条件判断有清晰的认识。
机器人视觉运动控制培训内容
阐述视觉信息如何转换为运动控制指令,例如视觉系统识别出目标物体的三维坐标后,如何通过坐标变换和运动规划算法,将其转换为机器人各关节的运动角度和速度指令。介绍视觉反馈控制的概念,即机器人在运动过程中如何根据视觉系统实时反馈的信息(如目标物体的位置变化)来调整运动轨迹,确保准确地完成任务。